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The exponentiated Pareto distribution has been used quite effectively to 
model many lifetime data. In this paper, a new bivariate exponentiated 
Pareto distribution is introduced. The proposed bivariate distribution is 
derived from Gaussian copula with exponentiated Pareto distribution as 
marginals. Some properties of the bivariate exponentiated Pareto 
distribution can be obtained using the Gaussian copula property. Moreover, 
several methods of estimation are considered to estimate the unknown 
parameters of the proposed bivariate distribution. Numerical simulations are 
carried out to compare the performances of different estimators.  Finally, one 
real data is analyzed and the results showed that the proposed bivariate 
distribution is useful for real life applications. 
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1. Introduction 

*The Pareto distribution usually used to analyze 
lifetime data, but its hazard function is restricted 
being decreasing. This problem was one of the 
reasons that lead researchers attention in finding 
ways to extend this family of distributions. Gupta et 
al. (1998) introduced a two-parameter distribution 
as a generalization of the standard Pareto Type II, 
called the exponentiated Pareto distribution. They 
proved that exponentiated Pareto distribution is 
effective for analyzing lifetime data. Depending on 
the value of the shape parameter, the failure rates 
take decreasing and upside-down bathtub shapes.  

A continuous non-negative random variable T 
follows an exponentiated Pareto distribution, if its 
cumulative distribution function (CDF) can be 
written as (Eq. 1):  

 

F(t, θ, λ) = [1 − (1 + t)−λ]
θ 

 , t, θ, λ > 0 ,                  (1) 
 
where, 𝜃 and 𝜆 are two shape parameters. Observe 
that if 𝜃 = 1, this will give the standard Pareto 
distribution type II. 

The probability density function (PDF) is given by 
Eq. 2 
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f(t, θ, λ) = θ λ [1 − (1 + t)−λ]
θ−1 

(1 + t)−(λ+1) ,                 (2) 
 

where t , θ, λ > 0 . We write EP to denote the 
exponentiated Pareto distribution.  

According to Shawky and Abu-Zinadah (2009), 
the density in Eq. 2 is decreasing if θ ≤ 1 and 

unimodal function with mode given by [
λ(θ−1)

λ+1
+

1]
1

λ⁄ − 1 if 𝜃 > 1, which give it a great flexibility of 
fit.  

In many lifetime data applications, we can have 
one unit associated with two or more lifetimes. For 
the case where we have two lifetimes 
T1 and T2 associated to each unit, we can consider 
bivariate lifetime distributions such as the studies of 
Freund (1961), Marshall and Olkin (1967), Mardia 
(1970), Whitt (1976), Sarhan and Balakrishnan 
(2007), Kundu et al. (2010), Gupta et al. (2010), Al-
Mutairi et al. (2011), Sankaran et al. (2014), and 
Olkin and Trikalinos (2015). Hutchinson and Lai 
(1990) studied the existent of bivariate non-normal 
distributions and provided many applications for 
different bivariate models. The use of copula 
function give a great flexibility to derive bivariate 
lifetime distributions, see for example, AL-Hussaini 
and Ateya (2006), Quiroz-Flores (2009), Gupta et al. 
(2010), Kundu and Gupta (2011), El-Sherpieny et al. 
(2013), Kundu (2015), Achcar et al. (2015), and El-
Gohary and El-Morshedy (2015). The main aim of 
this paper is to introduce a bivariate exponentiated 
Pareto distribution derived from Gaussian copula 
with EP distribution as marginals. Some properties 
and estimate of the parameters will be investigated 
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and analyzed. Simulation study will be used to 
examine the performance of this new distribution 
and one real data set will be analyzed to illustrate 
the flexibility of the proposed distribution. 

The paper is organized as follows: in Section 2, 
some basic definitions of copula and Gaussian copula 
functions are presented. The proposed bivariate 
exponentiated Pareto distribution is derived and 
some properties are discussed in Section 3. Section 4 
illustrates different methods of estimation of the 
unknown parameters. Monte Carlo simulation study 
and analysis of one real data set are carried out in 
Section 5. Finally, the paper is concluded in Section 
6. 

2. Copula  

Sklar (1959) introduced the name of "copula". It 
is a function that joins or “couples” two or more 
marginal distribution functions to construct 
bivariate or multivariate distribution. The copula 
function constructs unknown bivariate distributions 
from known marginals, see Trivedi and Zimmer 
(2007). In addition, this function can link any type of 
ma rginal distribution and could be from completely 
different families. However, other methods such as 
conditional distributions and mixing distributions 
regularly depend on marginals from the same family.  

A bivariate copulas is defined as follows: Let 𝑇1 
and 𝑇2 be continuous random variables with 
distribution functions 

 

FT1
(t1) = P(T1 ≤ t1) and FT2

(t2) = 𝑃(𝑇2 ≤ 𝑡2).  
 

According to Sklars theorem, there exists a copula 
C such that (Eq. 3) 

 
FT(t1 , t2 ) =  C(FT1

(t1 ), FT2
(t2 )  )                   (3) 

 

If  𝐹𝑇1
(𝑡1)  and 𝐹𝑇2

(𝑡2) are continuous and 

differentiable and C is unique then from Eq. 3, the 
joint density can be written as (Eq. 4)  

 

 fT(t1 , t2 ) = ∏ fTj (t j
) C`(FT1

(t1 ), FT2
(t2 )  )2

j=1 ,              (4) 

 
where fT1

(t1) , fT2
(t2) are the density functions 

corresponding to FT1
(t1 ), FT2

(t2) and  C` =
∂2C

∂FT1  ∂FT2

 

is the copula density.  
Many copulas have been introduced in the 

literature, where each of them have different 
dependence structure on the data, the interested 
readers are referred to Joe and Xu (1996), Trivedi 
and Zimmer (2007), Balakrishnan and Lai (2009), 
and Nelsen (2007). In this paper, we will concentrate 
on the Gaussian copula since it is a flexible and has 
full range of dependence. In addition, it is easy to 
generalize to multi-dimensions. 

The distribution function of bivariate Gaussian 
(normal) copula with correlation parameter ρ take 
the form (Eq. 5) 

 

CG(v1 , v2 ;  ρ ) =  Φρ(Φ−1(v1), Φ−1(v2), ρ ) =

∫ ∫
exp{

−1

2(1−ρ2)
(y1

2−2ρy1y2+y2
2)}

2π√1−ρ2

Φ−1(v1)

−∞

Φ−1(v2)

−∞
dy1dy2 ,             (5) 

 

where Φ𝜌 denotes the bivariate standard normal 

distribution function with correlation parameter ρ ∈
(−1, 1) and Φ−1 denotes the inverse of univariate 
standard normal distribution function. The density 
of the bivariate Gaussian copula is (Eq. 6) 
 

CG
` (v1, v2; ρ ) =  

exp{
−1

2(1−ρ2) 
(y1

2−2ρy1y2+y2
2)}

2π√1−ρ2
,                (6) 

 
where  𝑦1 = Φ−1(𝑣1), 𝑦2 = Φ−1(𝑣2), 𝑣1 = 𝐹1(𝑡1) and 
𝑣2 = 𝐹2(𝑡2) are the marginal distributions for the 
random variables T1 and  𝑇2 , respectively.  

3. Bivariate exponentiated Pareto distribution 
derived from Gaussian copula 

This section introduces a new bivariate 
exponentiated Pareto distribution derived from 

Gaussian copula. Let 𝑣𝑗 = 𝐹𝑇𝑗
(𝑡𝑗 ),  where 𝐹𝑇𝑗

(𝑡𝑗 ) is 

the distribution function of the EP distribution, given 
by Eq. 1, after indexing T, 𝜃 and 𝜆 by j, j=1, 2. Then by 
using the definition of a two dimensional copula in 
Eq. 3, the joint distribution function of the two EP 
random variables T1and T2derived from Gaussian 
copula can be written as (Eq. 7) 

 
  𝐹𝑇(𝑡1 , 𝑡2 ) = 𝐶𝐺(𝑣1, 𝑣2 , 𝜌)                           (7) 
 

Consequently, by using Eq. 4, the PDF of the 
bivariate exponentiated Pareto distribution (BEP) 
derived from Gaussian copula is given by Eq. 8 

 

𝑓𝑇(𝑡1 , 𝑡2 ) =  ∏ 𝑓𝑇𝑗
(𝑡 𝑗

)  𝐶`𝐺(𝑣1, 𝑣2 , 𝜌),2
𝑗=1                  (8) 

 
where  𝐶`𝐺(𝑣1, 𝑣2 , 𝜌) is the density of the bivariate 

Gaussian copula given by Eq. 6 and 𝑓𝑇𝑗
(𝑡 𝑗

) , 𝑗 = 1,2  

is the PDF of the EP distribution, given by Eq. 2. 
According to Achcar et al. (2015), the joint 

bivariate survival function for the lifetimes 𝑇1and 𝑇2 
is given by Eq. 9 

 
𝑆(𝑡1 , 𝑡2 ) = 1 − 𝐹1(𝑡1) −  𝐹2(𝑡2) + 𝐹(𝑡1, 𝑡2)                  (9) 
 

That is, the survival function of the BEP 
(𝜃1, 𝜆1, 𝜃2, 𝜆2, 𝜌 ) is given by Eq. 10 

 

S(t1 , t2 ) = 1 − θ1 λ1 [1 − (1 + t1)−λ1]
θ1−1 

(1 +

t1)−(λ1+1) − θ2 λ2 [1 − (1 + t2)−λ2]
θ2−1 

(1 + t2)−(λ2+1) +

CG(v1 , v2 ;  ρ )                    (10) 

3.1. Some properties of the BEP distribution 
derived from Gaussian copula 

It is well known that many dependence 
properties of a multivariate distribution depend only 
on the corresponding copula. Therefore, many 
dependence properties of the proposed BEP 
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distribution can be obtained by studying the 
Gaussian copula. 
A non-negative function d defined in ℝ2 is total 
positivity of order two, denoted by TP2 if for all 𝑡11 <
𝑡12 and  𝑡21 < 𝑡22 with 𝑡1, 𝑡2  ∈ ℝ  
 
𝑑(𝑡11, 𝑡21) 𝑑(𝑡12 , 𝑡22) ≥  𝑑(𝑡12 , 𝑡21) 𝑑(𝑡11, 𝑡22)               (11) 
 

And if we reverse the equality Eq. 11, we will 
have a reverse rule of order two denoted by (RR2).  

 
Property 1: Kundu (2015) pointed out that the 
Gaussian copula density is  
TP2 if 0 < 𝜌 < 1  and   RR2 if − 1 < ρ < 0. 
Hence, if (T1, T2 )~BEP distribution, then  
it is TP2 if 0 < ρ < 1, and RR2 if −1 < ρ < 0. 
 
Property 2: from the Gaussian copula, it follows that 
if (T1, T2)~BEP distribution, then for all values 
of  θj, λj, 𝑗 = 1,2, Kendall’s tau and Spearman rho 

becomes  𝜏 =
2

𝜋
𝑠𝑖𝑛−1(𝜌)  and   𝜌𝑠 =

6

𝜋
𝑠𝑖𝑛−1 (

𝜌

2
), 

respectively.  
 
Property 3: Since the Gaussian copula is upper tail 
and lower tail independent, it follows that if 
(T1, T2)~BEP distribution, then T1 and T2 are upper 
tail and lower tail independent. 

3.2. Graphical description of the BEP distribution 
derived from Gaussian copula 

The joint density 𝑓𝑇(𝑡1 , 𝑡2 ) given in Eq. 8 for 
three levels of dependence with 𝜃1 =  𝜃2 =
1.4 and 𝜆1 =  𝜆2 = 102 , are presented in Fig. 1. Figs. 
1a and 1b display 3D and a contour plots of the 
bivariate density, respectively, when 𝜌 = 0.7. Figs. 1c 
and 1d, show the contour plots for different levels of 
dependence parameter 𝜌=-0.5 and 0.85 respectively. 
From Fig. 1, it can be seen that large values of the 
copula parameter, 𝜌 (positive or negative) add a 
large linear dependence and the PDF will have more 
mass. In addition, it can be seen that the joint PDF 
takes on different shapes and will therefore be useful 
and have more flexibility in analyzing bivariate data. 

4. Estimation 

In this section, different methods of estimation 
are conducted. 

4.1. Maximum likelihood estimators 

Let Ti = (T1i, T2i)
` , i = 1, . . , n   be a bivariate 

random sample of size n from 
BEP (𝜃1, 𝜆1, 𝜃2, 𝜆2, 𝜌 ).Then the log likelihood 
function becomes Eq. 12. 

 
l = ∑ {n ln θj + n ln λj 

2
j=1   

+(𝜃𝑗 − 1) ∑ 𝑙𝑛 [1 − (1 + 𝑡𝑗𝑖)
−𝜆𝑗

]𝑛
𝑖=1   

−(𝜆𝑗 + 1) ∑ ln (𝑛
𝑖=1 1 + 𝑡𝑗𝑖)}                           (12) 

−𝑛 𝑙𝑛(2𝜋√1 − 𝜌2)    

+ ∑ [
−1

2(1−𝜌2)
 (𝑦2

1i
− 2𝜌𝑦1i𝑦2i − 𝑦2i

2)]𝑛
𝑖=1   

 

By differentiate the log likelihood function with 
respect to 𝜃𝑗 , 𝜆𝑗  and 𝜌, respectively, and equating the 

resulting equations to zero, we get Eq. 13. 
 

𝜕𝑙

𝜕𝜃𝑗 
=

𝑛

𝜃𝑗
+ ∑ 𝑙𝑛 [1 − (1 + 𝑡𝑗𝑖)

−𝜆𝑗
] = 0𝑛

𝑖=1                (13) 

 

thus 
 

𝝆𝜃𝑗̂𝑀𝐿
=

−𝑛

∑ ln[1−(1+𝑡𝑗𝑖)
−𝜆𝑗]𝑛

𝑖=1

                                 (14) 

 

similarly, for 𝜆𝑗  and 𝜌 (Eqs. 15 and 16) 
 
𝜕𝑙

𝜕𝜆𝑗
 =

𝑛

𝜆𝑗
+ (𝜃𝑗 − 1) ∑

ln(1+𝑡𝑗𝑖)

(1+𝑡𝑗𝑖)
𝜆𝑗−1

𝑛
𝑖=1   

− ∑ 𝑙𝑛𝑛
𝑖=1 (1 + 𝑡𝑗𝑖) = 0                     (15) 

𝜕𝑙

𝜕𝜌
=

𝑛𝜌 

(1−𝜌2)
−

𝜌 ∑ [(𝑦2
1i+𝑦2i

2)]+(1+𝜌2)𝑛
𝑖=1 ∑ 𝑦1i𝑦2i

𝑛
𝑖=1

(1−𝜌2)2
= 0           (16) 

 
Eqs. 15 and 16 will be solved numerically to 

obtain the ML estimator of 𝜆𝑗 , and 𝜌 , respectively. 

Hence, ML estimator of 𝜃𝑗 could be obtained by 

substituting 𝜆𝑗̂𝑀𝐿
 from Eq. 15 in Eq. 14. The 

simulation results of the ML method will be 
discussed in Section 5. 

4.1.1. Sampling information matrix and 
approximate confidence interval 

The ML estimate of the unknown parameters 
cannot be obtained in closed forms; In this case the 
approximate confidence interval of the parameters 
𝜔 = (θ1, λ1, θ2, λ2, 𝜌) can be obtained. That is, with 

the use of large sample and appropriate regularity 
conditions, the ML of 𝜔 is approximately 

~𝑀𝑁(𝜔, 𝐼−1) where 𝐼−1 is the asymptotic variance-

covariance matrix and I denotes the Fisher 
information matrix. Therefore, the approximate 
100(1 − 𝛾)% confidence interval is: 

 

𝜃𝑗̂𝑀𝐿
± 𝑍𝛾

2⁄
√𝑣𝑎𝑟 (𝜃𝑗̂𝑀𝐿

) ,  

𝜆𝑗̂𝑀𝐿
±   𝑍𝛾

2⁄
√𝑣𝑎𝑟 (𝜆𝑗̂𝑀𝐿

) ,  

 

and  
 

 𝜌̂𝑀𝐿 ± 𝑍𝛾
2⁄ √𝑣𝑎𝑟(𝜌̂𝑀𝐿)    

 

where 𝑍𝛾
2⁄  is the percentile of the standard normal 

distribution with right-tail probability 
𝛾

2⁄ . 

4.2. Inference functions for margins estimators  

The ML method could be computational intensive, 
because it needs to estimate jointly the parameters 
of the margins and the copula parameter. To avoid 
that, we will use the Inference functions for margins 
(IFM) method suggested by Joe and Xu (1996) to 
estimate the unknown parameters. 
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Fig. 1: Contour plots of BEP distribution derived from Gaussian copula for different values of 𝜌 

 
The two stages of the IFM method can be 

incorporated as follows: 
First stage, the estimates of the marginal 

parameters is computed by maximizing the following 
𝑙(θ1, λ1, θ2, λ2 ) with respect to 
θ1, λ1, θ2 and λ2 (Eq. 18). 

 
𝑙(θ1, λ1, θ2, λ2) = ∑ ∑ ln fj

2
j=1

n
i=1 (tji , θj , λj)  

= ∑ {𝑛 𝑙𝑛𝜃𝑗 + 𝑛 𝑙𝑛𝜆𝑗
2
𝑗=1                       (18) 

+(𝜃𝑗 − 1) ∑ 𝑙𝑛 [1 − (1 + 𝑡𝑗𝑖)
−𝜆𝑗

]𝑛
𝑖=1   

−(𝜆𝑗 + 1) ∑ ln (𝑛
𝑖=1 1 + 𝑡𝑗𝑖)}  

 

Second stage, the IFM estimate of  𝜌 can be 
obtained by maximizing the following 𝑙(𝜌) with 
respect to 𝜌 (Eq. 19) 

 
𝑙(𝜌) = ∑ 𝑙𝑛 CG

` (𝑣1𝑖 , 𝑣2𝑖 , 𝜌 )𝑛
𝑖=1 ,                 (19) 

 
where 
𝑣1𝑖 =  𝐹𝑇1

(𝑡1𝑖;  𝜃1𝐼𝐹𝑀
, 𝜆̂1𝐼𝐹𝑀

)   

 
and 

 
𝑣2𝑖 =  𝐹𝑇2

(𝑡2𝑖; 𝜃2𝐼𝐹𝑀
, 𝜆̂2𝐼𝐹𝑀

)  

 
According to Joe and Xu (1996), IFM method 

saves a significant amount of computational time. 

The simulation results of the IFM method will be 
carried out in Section 5. 

4.3. Canonical maximum likelihood estimators  

The Canonical maximum likelihood estimators 
(CML) method introduced by Genest et al. (1995) to 
estimate copula parameter. It is appropriate when 
the dependence parameter is important, which can 
be estimated without identifying the marginal 
distributions. This approach transforms the 
observations (𝑇1𝑖 , 𝑇2𝑖)′ into pseudo-observations 
with uniform margins (𝑈1𝑖 , 𝑈2𝑖)' using the empirical 
CDF of each marginal distribution. That is, the CML 
estimate of  𝜌 can be obtained by maximizing the log 
likelihood function for Gaussian copula given by Eq. 
19 with respect to 𝜌, where 𝑣𝑗𝑖 in this case is the 

pseudo-observations. For more details see, Genest et 
al. (1995). 

4.4. Bayesian estimation  

Let 𝑇𝑖 = (𝑇1𝑖 , 𝑇2𝑖)
` , 𝑖 = 1, . . , 𝑛   be a bivariate 

random sample of size n from BEP distribution. 
Suppose that, a little or no-information about the 

parameters is available. In this case, the prior 
distribution of the parameters is considered as a 
non-informative uniform distribution. Then, the 
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prior distribution for each parameter can be written 
as follows (Eq. 20).  

 

 𝜋(𝜃𝑗) ∝  
1

𝜃𝑗
, 𝜋(𝜆𝑗) ∝  

1

𝜆𝑗
, 𝜋(𝜌) ∝

1

2
 𝑗 = 1,2                       (20) 

 
therefore, the joint posterior distribution is given by 
Eq. 21. 
 
𝑓(θ1, λ1, θ2, λ2, 𝜌|𝑡) =
∏ {𝜋(𝜃𝑗)𝜋(𝜆𝑗)}2

𝑗=1 𝜋(𝜌) 𝐿(θ1, λ1, θ2, λ2, 𝜌),  

= ∏
(𝜃𝑗 𝜆𝑗)

𝑛−1

2
∏ [1 − (1 + 𝑡𝑗𝑖)

−λ𝑗
]

𝜃𝑗−1
𝑛
𝑖=1

2
𝑗=1   

(1 + 𝑡𝑖𝑗) −(λ𝑗+1) (2𝜋√1 − 𝜌2)
−𝑛

                                           (21) 

 𝑒𝑥𝑝 ∑ [
−1

2(1−𝜌2)
 (𝑦2

1i
− 2𝜌𝑦1i𝑦2i − 𝑦2i

2)]𝑛
𝑖=1   

 
It is clear that the above joint posterior function 

cannot be obtained in closed form. Therefore, MCMC 
techniques can be used to find the Bayes estimate of 
the parameters. Bayes estimators are obtained under 
squared error loss function and 100(1 − 𝛾)% 
credible interval for the vector of the parameters is 
given by  

𝑃[𝐿𝐿 ≤ 𝜔 ≤ 𝑈𝐿] = 1 − 𝛾, where 𝐿𝐿 and 𝑈𝐿 are 

the lower limit  and upper limit of the 100(1 − 𝛾)% 
credible interval for 𝜔 and are obtained by solving 

these two equations: 
 

𝑃(𝜔 ≤ 𝐿𝐿) =
𝛾

2
  

 
and 

 
𝑃(𝜔 ≥ 𝑈𝐿) =

𝛾

2
.  

 
MHadaptive package in the R program which 

depends on Metropolis- Hastings algorithm will be 
used to obtain the mean posterior estimates of the 
unknown parameters and the credible interval of the 
parameters numerically.  

5. Simulation study and data analysis 

5.1. Simulation study 

A numerical study is presented to illustrate the 
various theoretical results in previous section. 
Simulation results are given to see how the ML, IFM, 
CML and Bayesian estimators behave for different 
sample size and for different values of the copula 
parameter.  Keeping 𝜃1 = 𝜃2 = 0.9 and λ1 = λ2 =
1.8 , and  𝜌 = 0.5, 0.7 and 0.8 and taking sample sizes 
to be n=15, 30, 50, and 100 for ML, IFM and CML 
methods.  

Mean estimates and mean squared errors (MSE) 
are calculated over 1000 replications. Moreover, the 
performances of the different estimators are 
compared based on the MSE through Monte Carlo 
simulations. The results are reported in Table 1.  

From Table 1, it can be seen that the 
performances of the ML, IFM and CML estimates are 
satisfactory. In addition, as the sample size increases, 
the MSE decrease for all the parameters. It is 

observed that the IFM estimates are close to ML 
estimates, however, based on MSE these estimators 
are less efficient than ML estimators. 

 In addition, it is observed that the estimate of the 
copula parameter using CML method has a larger 
MSE than the ML and IFM estimates of this 
parameter which is consistent with the results found 
by Genest et al. (1995). 

Table 2 reports the Bayesian and ML estimates of 
the unknown parameters for n= 80, 100 and 150 
along with their MSE.  

From Table 2, it is observed that the MSE of ML 
estimates of θ1, λ1, θ2and λ2 are smaller than their 
corresponding MSE of Bayesian estimates while MSE 
of Bayesian estimate of 𝜌 is smaller than its 
corresponding of ML estimate. Therefore, it can be 
concluded that the Bayesian method based on non-
informative prior performs better than the ML 
method for estimating the copula parameter. 
Generally, it can be noted that the values of the 
copula parameter have small effects on the marginal 
parameter estimates.  

 
Table 1: Mean estimates and the corresponding MSE 
(reported within brackets) of the ML, IFM and CML 
estimators for 𝜃1 = 𝜃2 = 0.9, 𝜆1 = 𝜆2 = 1.8 and for 

different values of 𝜌 

n   
𝜌 

0.5 0.7 0.8 

15 

ML 

𝜃1 1.115 (0.3017) 1.111(0.2791) 1.107(0.2685) 

𝜆̂1 2.129 (0.7225) 2.129(0.7247) 2.129(0.7288) 

𝜃2 1.093 (0.3370) 1.095(0.3302) 1.096(0.3141) 

𝜆̂2 2.112 (0.7456) 2.115(0.7507) 2.116(0.7525) 
𝜌̂ 0.484 (0.0433) 0.685(0.0221) 0.788(0.0117) 

IFM 

𝜃1 1.117 (0.3055) 1.113(0.2822) 1.111(0.2710) 

𝜆̂1 2.131 (0.7236) 2.131(0.7258) 2.132(0.7305) 

𝜃2 1.094 (0.3392) 1.097(0.3334) 1.099(0.3182) 

𝜆̂2 2.113 (0.7458) 2.117(0.7533) 2.119(0.7573) 
𝜌̂ 0.484 (0.0432) 0.685(0.0221) 0.788(0.0118) 

CML 𝜌̂ 0.481 (0.0472) 0.672(0.0244) 0.767(0.0142) 

30 

ML 

𝜃1 0.985 (0.0702) 0.983(0.0699) 0.982(0.0701) 

𝜆̂1 1.964(0.2664) 1.963(0.2650) 1.961(0.2649) 

𝜃2 0.974 (0.0694) 0.975(0.0703) 0.975(0.0708) 

𝜆̂2 1.949 (0.2728) 1.951(0.2722) 1.952(0.2717) 
𝜌̂ 0.494 (0.0205) 0.694(0.0100) 0.795(0.0051) 

IFM 

𝜃1 0.985 (0.0704) 0.984(0.0702) 0.984(0.0704) 

𝜆̂1 1.964 (0.2667) 1.963(0.2659) 1.963(0.2662) 

𝜃2 0.9742 (0.0695) 0.976(0.0704) 0.977(0.0709) 

𝜆̂2 1.949 (0.2732) 1.951(0.2731) 1.953(0.2731) 
𝜌̂ 0.493 (0.0205) 0.693(0.0100) 0.795(0.0051) 

CML 𝜌̂ 0.489 (0.0208) 0.684(0.0104) 0.781(0.0059) 

50 

ML 

𝜃1 0.947 (0.0339) 0.946(0.0339) 0.945(0.0341) 

𝜆̂1 1.903 (0.1490) 1.901(0.1492) 1.899(0.1494) 

𝜃2 0.938 (0.0356) 0.939(0.0365) 0.939(0.0369) 

𝜆̂2 1.884 (0.1491) 1.886(0.1516) 1.887(0.1525) 
𝜌̂ 0.497 (0.0119) 0.697(0.0056) 0.797(0.0028) 

IFM 

𝜃1 0.948 (0.0338) 0.946(0.0338) 0.946(0.0341) 

𝜆̂1 1.903 (0.1492) 1.902(0.1498) 1.901(0.1503) 

𝜃2 0.939 (0.0357) 0.939(0.0366) 0.941(0.0370) 

𝜆̂2 1.884 (0.1495) 1.887(0.1523) 1.888(0.1535) 
𝜌̂ 0.497 (0.0118) 0.697(0.0056) 0.797(0.0028) 

CML 𝜌̂ 0.4936 (0.0121) 0.688(0.0060) 0.787(0.0032) 

100 

ML 

𝜃1 0.9250 (0.0162) 0.923(0.0161) 0.922(0.0160) 

𝜆̂1 1.8553(0.0667) 1.853(0.0674) 1.852(0.0675) 

𝜃2 0.9119 (0.0138) 0.912(0.0139) 0.913(0.0140) 

𝜆̂2 1.8318 (0.0622) 1.833(0.0625) 1.835(0.0628) 
𝜌̂ 0.4988 (0.0058) 0.698(0.0027) 0.798(0.0013) 

IFM 

𝜃1 0.9252 (0.0161) 0.924(0.0161) 0.923(0.0160) 

𝜆̂1 1.8550 (0.0667) 1.853(0.0676) 1.851(0.0678) 

𝜃2 0.9122 (0.0138) 0.913(0.0139) 0.913(0.0140) 

𝜆̂2 1.8317 (0.0622) 1.833(0.0625) 1.835(0.0629) 
𝜌̂ 0.4986 (0.0058) 0.698(0.0027) 0.798(0.0013) 

CML 𝜌̂ 0.4960 (0.0058) 0.693(0.0028) 0.792(0.0015) 
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Table 2: Mean estimates and the corresponding MSE 
(reported within brackets) of the ML and Bayesian 
estimators under BEP distribution when 𝜃1 = 𝜃2 =

0.9, 𝜆1 = 𝜆2 = 1.8 with different values of 𝜌 

n   
𝜌 

0.5 0.7 0.8 

80 

M
L

 

𝜃1 
0.9301 

(0.0206) 
0.9281 

(0.0204) 

0.9268 
(0.0202) 
(0.4352) 

𝜆̂1 
1.8668 

(0.0874) 
1.8639 

(0.0879) 
1.8618 

(0.0878) 

𝜃2 
0.9168 

(0.0172) 
0.9170 

(0.0175) 
1.8439 

(0.0816) 

𝜆̂2 
1.8432 

(0.0813) 
1.8439 

(0.0816) 
1.8447 

(0.0820) 

𝜌̂ 
0.5010 

(0.0073) 
0.7001 

(0.0034) 
0.7998 

(0.0017) 

B
ay

es
ia

n
 

𝜃1 
0.6497 

(0.0707) 
0.6637 

(0.0644) 
0.6703 

(0.0617) 

𝜆̂1 
1.3272 

(0.2716) 
1.3367 

(0.2632) 
1.3436 

(0.2581) 

𝜃2 
0.8819 

(0.0166) 
0.8434 

(0.0179) 
0.8164 

(0.0207) 

𝜆̂2 
1.7128 

(0.0741) 
1.6437 

(0.0887) 
1.5931 

(0.1048) 

𝜌̂ 
0.4934 

(0.0047) 
0.6798 

(0.0027) 
0.7820 

(0.0014) 

100 

ML 

𝜃1 
0.9250 

(0.0162) 
0.9236 

(0.0161) 
0.9225 

(0.0160) 

𝜆̂1 
1.8553 

(0.0667) 
1.8535 

(0.0674) 
1.8521 

(0.0675) 

𝜃2 
0.9119 

(0.0138) 
0.9126 

(0.0139) 
0.9133 

(0.0140) 

𝜆̂2 
1.8318 

(0.0622) 
1.8336 

(0.0625) 
1.8351 

(0.0628) 

𝜌̂ 
0.4988 

(0.0058) 
0.6987 

(0.0027) 
0.7989 

(0.0013) 

B
ay

es
ia

n
 

𝜃1 
0.6845 

(0.0538) 
0.6952 

(0.0498) 
0.7043 

(0.0465) 

𝜆̂1 
1.4241 

(0.1854) 
1.4387 

(0.1749) 
1.4478 

(0.1693) 

𝜃2 
1.0031 

(0.0285) 
0.9466 

(0.0174) 
0.9101 

(0.0140) 

𝜆̂2 
1.9662 

(0.0956) 
1.8720 

(0.0691) 
1.8130 

(0.0599) 

𝜌̂ 
0.5118 

(0.0041) 
0.6993 

(0.0018) 
0.7979 

(0.0008) 

150 

M
L

 

𝜃1 
0.9139 

(0.0099) 
0.9129 

(0.0101) 
0.9122 

(0.0100) 

𝜆̂1 
1.8324 

(0.0419) 
1.8301 

(0.0423) 
1.8295 

(0.0423) 

𝜃2 
0.9062 

(0.0091) 
0.9063 

(0.0091) 
0.9066 

(0.0092) 

𝜆̂2 
1.8170 

(0.0395) 
1.8177 

(0.0396) 
1.8183 

(0.0397) 

𝜌̂ 
0.5005 

(0.0038) 
0.7005 

(0.0017) 
0.7999 

(0.0008) 

B
ay

es
ia

n
 

𝜃1 
0.8297 

(0.0126) 
0.8338 

(0.0121) 
0.8401 

(0.0113) 

𝜆̂1 
1.6170 

(0.0679) 
1.6116 

(0.0682) 
1.6109 

(0.0689) 

𝜃2 
0.9823 

(0.0183) 
0.9567 

(0.0140) 
0.9398 

(0.0119) 

𝜆̂2 
1.8192 

(0.0395) 
1.7728 

(0.0376) 
1.7405 

(0.0404) 

𝜌̂ 
0.5272 

(0.0034) 
0.7142 

(0.0012) 
0.8084 

(0.0005) 

5.2. Data analysis 

The American football league data obtained from 
the matches played on three consecutive weekends 
in 1986 have two variables 𝑇1and 𝑇2where; 𝑇1 is the 
game time to the first points scored by kicking the 
ball between goalposts and 𝑇2 is the game time to the 
first points scored by moving the ball into the end 
zone, see Cso rgő and Welsh (1989). These times are 
of interest to a casual spectator who wants to know 
how long one has to wait to watch a touchdown or to 
a spectator who is interested only at the beginning 
stages of a game. Some basic statistics of 𝑇1 and 𝑇2  
are presented in Table 3. 

Table 3: The basic statistics of T1 and T2 

Marginal Min Max Median Quartile 
1-st 3-rd 

T1 0.75 32.45 7.515 4.227 11.43 
T2 0.75 49.88 9.915 6.422 14.95 

 

It is observed from the histogram and scatter 
plots of the data that both 𝑇1 and 𝑇2 are right skewed 
and positively correlated. The sample spearman 
correlation coefficient between 𝑇1 and 𝑇2  is 0.804. 
Since both the marginals are right skewed and 
sample correlation coefficient is also within the 
possible range of the proposed BEP distribution, we 
use the BEP to model this bivariate data set.  

Before progressing further, the natural question 
that arises here is whether the BEP distribution fits 
these data or not. Kundu and Gupta (2011) 
mentioned that we can test the marginals only, since 
there is not a satisfactory goodness of fit test for a 
general bivariate distribution functions. Hence, the 
CDF plots of the univariate EP distribution with the 
empirical distribution of the data are conducted to 
obtain the initial values of the marginals parameters. 
We have fitted the EP distribution to the marginals 

and obtained: 𝜃̂1 = 9.948, 𝜆̂1 = 1.375, 𝜃̂2 = 8.013,

𝜆̂2 = 1.142.  Fig. 2 show the plots of the fitted and the 
empirical CDF for the two marginals based on ML 
estimates. 

 
Fig. 2: The plots of the fitted and the empirical CDF for the 

two marginals based on ML estimates 
 

The Kolmogorov-Smirnov (K-S) test values and 
the associated p values (reported in brackets) for 𝑇1 
and 𝑇2 are 0.1871 (0.1057) and 0.1889 (0.087), 
respectively. Therefore, the K-S along with Fig. 2 
indicates that the BEP distribution provides 
appropriate fit for this bivariate data set. 

Also, the K-S test values and the associated p 
values (reported in brackets) for 𝑇1 and 𝑇2 using the 
Bayesian estimates are 0.1731 (0.161) and 0.1782 
(0.1224), respectively. This indicates that the 
estimated model is appropriate for analyzing this 
data set. 

In addition, to examine if the Gaussian copula is 
appropriate for this data, goodness of fit test is 
conducted and the result showed that it is suitable 
with (p value > 0.05) and the copula parameter 
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based on maximum pseudo likelihood (MPL) 
estimated to be 0.88 which can be used as initial 
value when fitting BEP distribution. For details, see, 
Genest et al. (2009). 

Therefore, we use the ML estimates of the 
marginal parameter along with the estimate of 
copula parameter obtained based on MPL as initial 
values to fit BEP distribution to the data. Table 4 
reports the ML, IFM, CML and Bayesian estimates, 
the standard error (SE), 95% confidence and 
credible interval of the BEP parameters. From Table 
4, it can be seen that the IFM estimates of the 
marginal parameters are better than the ML 
estimates, while based on SE and the length of the 
intervals the ML estimate of copula parameter is 
better than the IFM estimate. Also, it is observed that 
the estimate of the copula parameter using CML 
method has a larger SE and larger interval length 
than ML and IFM estimates of this parameter. Based 
on SE and the length of the intervals the Bayesian 
estimates of the parameters are better than the ML, 
IFM and CML estimates.  

Now for comparison purposes, EL-Damcese et al. 
(2015) presented the analysis of a same real data set 
using the bivariate exponentaited generalized 
Weibull-Gompertz distribution (BEGWG) and 
compared it with bivariate exponentiated Gompertez 
distribution (BEG). Table 5 reports the ML estimates, 
the maximized log likelihood values (𝑙), Akaike 
information criterion (AIC), correct Akaike 
information criterion (CAIC) and Bayesian 

information criterion (BIC) test statistic for the BEG, 
BEGWG, and BEP distributions. 

From Table 5 it can be seen that the BEP 
distribution has lowest AIC, CAIC, and BIC values 
compared the BEGWG and BEG distributions. 
Therefore, BEP distribution provides more 
appropriate and flexible fit compared to BEGWG and 
BEG for this data set.  

6. Conclusion 

In this paper, we have introduced BEP 
distribution as a flexible bivariate lifetime 
distribution. The proposed bivariate distribution 
derived from Gaussian copula with exponentiated 
Pareto distribution as marginals. It is observed that 
the generation of random samples from BEP 
distribution is simple, and therefore Monte Carlo 
simulation is performed to estimate the parameters 
using different methods of estimation. We have 
discussed some interesting properties of this new 
bivariate distribution using the Gaussian copula 
property. Monte Carlo simulation indicated that the 
performance of the ML, IFM, CML and Bayesian 
estimators are quite satisfactory. The proposed 
distribution applied to real life data set and the 
results of analysis showed that the BEP distribution 
provides more suitable fit than BEG and BEGWG 
distributions.  

 
Table 4: The ML, IFM, CML and Bayesian estimate of parameters, SE, interval estimate and interval length (reported within 

brackets) under BEP distribution 

 
ML IFM CML Bayesian 

Estimate SE 95% CI Estimate SE 95% CI Estimate SE 95% CI Estimate SE 95% CI 

𝜃1 9.945 2.955 
4.153-15.743 

(11.589) 
9.101 2.706 

3.797 -14.404 
(10.607) 

 

10.062 0.161 
5.871-15.303 

(9.431) 

𝜆1 1.375 0.172 
1.038 - 1.711 

(0.673) 
1.327 0.168 

0.997 – 1.658 
(0.661) 

1.361 0.009 
1.086 - 1.645 

(0.559) 

𝜃2 8.060 2.302 
3.499-12.526 

(9.026) 
7.462 2.136 

3.274 – 11.65 
(8.376) 

8.076 0.417 
4.734 -12.215 

(7.480) 

𝜆2 1.148 0.148 
0.853-  1.432 

(0.579) 
1.112 0.145 

0.828 – 1.398 
(0.569) 

1.135 0.033 
0.895 - 1.376 

(0.481) 

𝜌 0.927 0.02 
0.888- 0.966 

(0.078) 
0.929 0.028 

0.874- 0.986 
(0.112) 

0.835 0.047 
0.741- 0.929 

(0.188) 
0.917 0.001 

0.881 - 0.944 
(0.063) 

 

Table 5: The ML estimates, 𝑙, AIC, CAIC and BIC values 
Model ML estimates -𝑙 AIC CAIC BIC 

BEG 𝛼̂1=0.043 𝛼̂2=0.528 𝛼̂3 =1.037 𝜆̂=0.787 ___ 370.41 748.82 749.90 755.77 
BEGWG 𝛼̂1=0.032 𝛼̂2=0.186 𝛼̂3 =0.406 ___ ___ 354.03 714.06 714.66 719.8 

BEP 𝜃1=9.948 𝜆̂1=1.375 𝜃2=8.013 𝜆̂2=1.142 𝜌̂=0.927 252.27 514.56 516.22 523.25 
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